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ABSTRACT
Binary encoding on high-dimensional data points has at-
tracted much attention due to its computational and storage
efficiency. While numerous efforts have been made to encode
data points into binary codes, how to calculate the effective
distance on binary codes to approximate the original dis-
tance is rarely addressed. In this paper, we propose an effec-
tive distance measurement for binary code ranking. In our
approach, the binary code is firstly decomposed into mul-
tiple sub codes, each of which generates a query-dependent
distance lookup table. Then the distance between the query
and the binary code is constructed as the aggregation of the
distances from all sub codes by looking up their respective
tables. The entries of the lookup tables are optimized by
minimizing the misalignment between the approximate dis-
tance and the original distance. Such a scheme is applied to
both the symmetric distance and the asymmetric distance.
Extensive experimental results show superior performance
of the proposed approach over state-of-the-art methods on
three real-world high-dimensional datasets for binary code
ranking.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Pro-
cess

General Terms
Algorithms, Measurement, Experimentation

Keywords
Binary Code Ranking; Lookup Table; Approximate Nearest
Neighbor Search
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Figure 1: Hashing-based ANN search. (a) encod-
ing of the high-dimensional data to binary codes;
(b) distance between binary codes; (c) distance be-
tween unbinarized query and the binary code; (d)
alignment of the symmetric distance towards the
original distance by our OSD; (e) alignment of the
asymmetric distance towards the original distance
by our OSD.

Nearest neighbor (NN) search is a fundamental problem in
many multimedia and computer vision applications. Due to
the scalability issue and “curse of dimensionality”, exact NN
search is often intractable for large-scale high-dimensional
datasets in practice. Instead, approximate nearest neighbor
(ANN) search can provide orders of magnitude faster speed
with near-optimal accuracy and is thus more widely applied
in real applications than exact NN search [21].

Recently, hashing for ANN search has attracted lots of at-
tention because of its storage and computational efficiency.
High-dimensional data points are represented as compact
binary codes, and the distance on binary codes is adopted
as the approximate measure towards the original distance1.
Numerous efforts have been devoted to encode the points
into binary codes. One representative approach is locality-
sensitive hashing (LSH) [6] which employs random projec-
tions to compute the binary codes. It is guaranteed that sim-
ilar data points are mapped into the same binary codes with

1Here we assume that the original distance is computed by
the Euclidean distance in the high-dimensional data space.



a high probability. Instead of random projection-based ap-
proaches, one can learn the hash functions from the databases
by preserving the similarities evaluated from the original
space in the binary code space [8, 15, 16, 18, 22, 27, 28, 29,
30, 34, 35]. The semantic information can be incorporated
to construct the hash functions, which is not our focus. In
this paper, we mainly target on the search based on the
Euclidean distance. Fig. 1 (a) shows the role of hashing
functions in the search pipeline.

After obtaining binary codes, the distance between the
query and the code is then used to rank all the database
points. The Hamming distance, which counts the number
of bits that differ between two binary codes, is mostly em-
ployed in existing works [3, 16, 27, 29]. It can be quickly
calculated with several hardware instructions. However, its
effectiveness is limited, and only Q + 1 different values are
provided, where Q is the number of bits (i.e., code length).
As a consequence, for a query point, many database points
may share the same Hamming distance value.

Besides encoding the query into the binary code, another
way is to directly define some appropriate distance between
the unencoded query and the database binary code, which is
usually referred to as asymmetric distance (AD) [4]. Com-
paratively, the distance using the encoded query is referred
to as symmetric distance (SD). Fig. 1 (b) and (c) illustrate
the relations of SD and AD, respectively. Since the un-
encoded query carries more information than the encoded
query, AD generally achieves better accuracy than SD. In [4,
31, 33], query-dependent weights are computed for each bit
under some assumptions, such as the uniform distribution
assumption [33], and the distance is defined as the sum-
mation of a portion of the weights according to the binary
codes. For product quantization [8], and composite quanti-
zation [32] the space is grouped into multiple clusters. Each
database point is encoded by the index of the nearest cluster
center and AD is defined as the distance between the query
and the cluster center.

Given a query point and binary codes, in this paper we
study the problem of how to effectively measure the distance
between the query and the database binary codes for the ANN
search. Here the effectiveness refers to the alignment be-
tween the search results based on the approximate distance
and those based on the original distance. Suppose the code
length is Q, there are in total of 2Q different possible codes.
A simple but effective way is to build up a lookup table with
2Q entries, each of which represents the distance between
the query and the corresponding binary code. Obviously,
such a table can contain complete distance information. By
carefully setting the values in the lookup table, we expect a
much better approximate distance as well as ranking result.

However, when the code length Q increases, storing 2Q

values in the table becomes infeasible. To address this is-
sue, we propose to partition the Q bits into multiple sub
codes, each of which generates a much smaller lookup ta-
ble. Then, the overall approximate distance is defined as
the aggregation from these lookup tables of all sub codes.
We optimize the entry values in the lookup tables by mini-
mizing the misalignment between the approximate distance
and the original distance. We term the proposed idea ap-
plied to SD as Optimized Symmetric Distance (OSD) while
to AD as Optimized Asymmetric Distance (OAD). Fig. 1
(d) and (e) depict the alignment of our OSD and OAD, re-
spectively. Extensive experimental results demonstrate the

superior effectiveness of our approach over state-of-the-art
methods for binary code ranking.

Our approach has the following advantages. 1) It gener-
alizes the existing approaches and achieves better ranking
results. 2) It can be applied to a wide range of binary codes,
including the codes generated by product quantization [8].
3) The algorithm makes no specific assumption on the data
distribution (e.g. uniform distribution). 4) It is efficient and
consumes linear training time to the data size. The extra
testing time is minor and is consistent with the data size.

2. RELATED WORK
In this section, we review hashing-based ANN search al-

gorithms that are closely related to our approach. The
hashing-based search algorithms consist of two main phases.
The first phase is binary code encoding, in which each data
point is encoded as a binary code. The second phase is bi-
nary code ranking, in which all data points are ranked based
on their distances computed on binary codes to the query.

2.1 Binary code encoding
There are generally two types of approaches towards en-

coding high-dimensional data points into binary codes. One
is based on random projections and the other is to learn
from the data.

Locality sensitive hashing (LSH) [6] is one of the typical
random-based approaches. The key idea is to hash high-
dimensional data points using several random hash func-
tions to ensure that the probability of collision is high for
close points and vice versa. There are various algorithms
extending LSH, e.g. Kernelized LSH [13], Shift-invariant
kernel hashing [20], Super-bit LSH [9]. These approaches
are blind with the data distribution and usually need longer
binary codes or more hash tables to achieve a satisfactory
performance.

In contrast, learning-based algorithms compute the hash
function explicitly from the training data. Binary recon-
structive embedding [12] aims to align the Hamming dis-
tance to the original Euclidean distance. Iterative quanti-
zation hashing [3] and isotropic hashing [10] are based on
PCA and rotate the axis by minimization of the distortion
errors and by the equality of variances, respectively. Spec-
tral hashing (SH) [29] learns the hash codes by minimiz-
ing the summation of the Hamming distances weighted by
the similarities computed in the input space, which is ex-
tended from different perspectives in [17, 28]. The sequen-
tial projection learning scheme [25] and LDAHash [23] learn
hash functions to minimize (maximize) the Hamming dis-
tance of similar (dissimilar) pairs. Ranking-based hashing
approaches are developed in [15, 27] to expect the ranking
order is well aligned from the binary space to the original
space.

Product quantization (PQ) [8] encodes the points by the
index of the nearest cluster center with the quantization
errors minimized. The training time cost for a large num-
ber of clusters is reduced through partitioning the original
space into multiple disjoint subspaces and clustering each
subspace. The quantization errors are further reduced in [2,
18, 26, 32].

2.2 Binary code ranking
Given a query point, its distance to the binary code of each

database point is typically used as the approximation of the



true distance in the original high-dimensional space. Due
to the fast speed of the approximate distance computation,
even the exhaustive search over the whole dataset is fast
enough in practice. Sophisticated techniques based on the
inverted index can further improve the speed, e.g., [1, 8, 19].
In this phase, the approximate distance plays a crucial role
on the overall ranking performance.

The distance approximation scheme consists of two groups:
symmetric distance (SD) and asymmetric distance (AD). SD
is referred to as the distance between the data from the same
space while AD is referred to as the distance between the
data from different spaces.
Symmetric Distance: The Hamming distance is most
widely used and can be computed efficiently by bit oper-
ations. However, the Hamming distance is often not suf-
ficiently effective and many retrieved candidates may share
the same distance value. The Spherical Hamming distance [5]
is based on the hypersphere hashing scheme and is defined as
the Hamming distance divided by the number of bits where
the points falls into the same hypersphere. Manhattan hash-
ing [11] uses the Manhattan distance with each projected
dimension encoded by natural binary codes. The weighted
Hamming distance, where each bit is assigned to a real-
valued weight, is used in [15, 28] to rank the database points.
For product quantization [8] and cartesian K-means [18],
the space is split into multiple clusters, and the distance be-
tween the cluster centers is used to approximate the original
distance.
Asymmetric Distance: AD does not encode the query
point as the binary code and thus is able to exploit more
accurate query representation. The distance in [31] assigns
a bit-level weight, which depends on the unbinarized hash
values [31] of the query and the database points. Two kinds
of ADs are proposed in [4], based on the assumption that
the Euclidean distance between the unbinarized hash values
is closely related with the original distance. QsRank [33] de-
fines the query-sensitive distance for the PCA-based binary
codes. The asymmetric Hamming distance [7] is incorpo-
rated within the inverted file structure. In [8, 18, 32], the
distance between the original query point and the cluster
centers is used to approximate the original distance with
each database point encoded as the index of the nearest
cluster.

In this paper, we focus on the second phase, and aim to
define the optimized distances on binary codes to achieve
effective binary code ranking. The first phase to encode the
high-dimensional data is not our contribution.

3. OVERVIEW
Given a dataset X = {x1, · · · ,xN} with xi ∈ RP where

N is the dataset size and P is the dimensionality of data
space, the encoding scheme encodes each data point into a
binary code, and can be written as h : RP 7→ {0, 1}Q, where
Q is the code length. Let bi ∈ {0, 1}Q be the binary code of
xi. Provided the high-dimensional dataset and the derived
binary codes, we aim to optimize the distance on binary
codes to improve the search accuracy.

Given a query point q ∈ RP , the distance comparison
is mainly determined by the binary codes of the database
points. Since Q bits lead to 2Q different codes, we can build
up a lookup table with 2Q entries, each of which represents
the distance between the query and the corresponding bi-

Table 1: Sizes of lookup tables with different num-
bers of partitions when Q = 32.

T 1 2 4 8 16

T × 2Q/T 232 217 210 27 26

nary code. Fig. 2 (a) illustrates the lookup table with 216

entries when Q = 16.
However, with the code length Q increased, storing 2Q

entries becomes infeasible in practice. To address the scala-
bility problem, we propose to partition the Q bits into mul-
tiple sub codes, and each sub code generates a much smaller
lookup table. Let T be the number of partitions. For the
sake of simplicity, we assume Q is divisible by T and the
length of each sub code is equal to S , Q/T , where the

symbol ‘,’ means ‘defined as’. Our approach can be eas-
ily applied to partitions with an unequal length. Since the
length of the sub code is S, there are M , 2S possible bi-
nary codes or buckets on each partition. Denote the smaller
lookup table as dt(q) ∈ RM , t ∈ {1, · · · , T} for the query
q. In certain cases, we eliminate q and use dt to denote the
lookup table without confusion. Fig. 2 (b) shows 2 smaller
lookup tables when T = 2 and Q = 16.

Before describing how to aggregate the distance from the
lookup tables {dt}, we introduce some notations. Let bt

i ∈
{0, 1}S be the t-th sub code of the binary code bi. Given bt

i,
we further introduce an indicator matrix Rt ∈ {0, 1}N×M ,
in which the entry rtj,m on the j-th row and m-th column is
defined as

rtj,m ,

{
1, m = P(bt

j)

0, otherwise,
(1)

where P(bt
j) maps the binary representation bt

j into the
natural decimal representation. For example, P(0100) = 4
and P(1001) = 9. In other words, the condition m = P(bt

j)
means that on the t-th partition, the j-th point falls into
the m-th bucket. The two representations, bt

j and rtj,m are
equivalent, and we can easily derive one from the other.

Then, we arrive at the proposed distance between the
query q and the binary code bj with T partitions,

D(q,bj) ,
∑
t,n

rtj,nd
t
n(q), (2)

where dtn(q) is the n-th entry of dt(q). The intuition of the
distance definition is to select one entry from each dt and ag-
gregate these selected entries. With fixed t, the summation
through all n equivalently extracts the entry dtnt

, where on
the t-th partition the j-th point falls into the nt-th bucket.
Then over all the possible t values, we sum up dtnt

to obtain
the overall distance.

If no partitioning is performed, i.e. T = 1, the lookup
table {d1n} contains 2Q entries and each entry denotes the
distance to the corresponding binary code. When T > 1, the
distance is constructed as the summation of T entries. By
partitioning, the size of lookup tables reduces to T × 2Q/T

from 2Q. It can be easily proved that with T ≤ Q/2, the
size is strictly decreased with a larger T . Table 1 illustrates
the sizes with different numbers of partitions when Q = 32.

Then, all the database points can be ranked by the dis-
tance defined in Eqn. 2. In Sec. 4 and Sec. 5, we will present
the proposed approaches to learn {dt(q)} for SD and AD.
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Figure 2: Proposed lookup tables for binary code ranking with 16 bits. (a) a query-dependent lookup table
to indicate the distance to any binary code of the database. (b) 2 smaller lookup tables by 2 partitions on
the database code. (c) 2 lookup matrices to store all the distance information between the query code and
the database code. (d) 4 smaller lookup matrices by further splitting the query code into 2 groups.

4. OPTIMIZED SYMMETRIC DISTANCE
For symmetric distance, the query point is encoded as a

binary code, denoted by bq. Accordingly, the lookup table
{dt(q)} is written as {dt(bq)}. Since there are 2Q different
possible query codes and 2S different codes for each of the
T partitions of the database codes, we can imagine to pre-
build T lookup matrices with the size 2Q × 2S . Fig. 2 (c)
illustrates the lookup matrix with the size 216 × 28 when
T = 2 and Q = 16. During the search stage, we can extract
the corresponding row as the lookup table dt(bq).

However, storing the matrix with the size 2Q×2S is infea-
sible. To address the problem, we propose to partition the
query code in the same way as done for the database code
bj . Let Ds,t ∈ RM×M be the lookup matrix between the
s-th partition of the query code and the t-th partition of the
database code, and ds,tm,n be the entry on the m-th row and
the n-th column of Ds,t. Fig. 2 (d) shows the example when
T = 2 and Q = 16. Then, the element of the lookup tables
is defined as

dtn(q) ,
∑
s,m

rsq,md
s,t
m,n, (3)

where rsq,m is the indicator notation of the query code, sim-
ilar as in Eqn. 1 for the database code. If rsq,ms

is non-zero,
Eqn. 3 is equivalent to dtn =

∑
s r

s
q,ms

ds,tms,n. That is, every
partition of the query code contributes one entry to con-
struct dtn.

The lookup matrix {Ds,t} contains all the distances be-
tween any query code to any database codes. We offline
learn {Ds,t} from the training data, and compute the lookup
table {dt(bq)} for the query code bq by Eqn. 3.

4.1 Formulation
The original distance between the query point q and the

database point xj is

‖q− xj‖2, (4)

while the approximate symmetric distance between their bi-
nary codes is constructed by Eqn. 2 and Eqn. 3. Obviously,
there may exist a distance approximation error, and it is
beneficial to minimize it for accurate ANN search. Substi-
tuting Eqn. 3 into Eqn. 2, we propose to learn the values

{ds,tm,n} by minimizing

Eq

(∑
j

(‖q− xj‖22 −
∑
t,n

rtj,n
∑
s,m

rsq,md
s,t
m,n)2

)
, (5)

where Eq(·) represents the expectation over the distribution
of the query q.

Assuming that the query and the database points fol-
low the same data distribution, the problem of minimizing
Eqn. 5 is transformed to

min
{ds,tm,n}

FS ,
1

2

∑
i,j

(‖xi − xj‖22 −
∑

s,t,m,n

rsi,mr
t
j,nd

s,t
m,n)2. (6)

In this formulation, ds,tm,n is not required to be non-negative.
The only requirement is the overall approximate distance∑

s,t,m,n r
s
i,mr

t
j,nd

s,t
m,n should align as well as possible to the

squared original distance ‖xi−xj‖22. Here we use the squared
Euclidean distance rather than the Euclidean distance be-
cause of the fact that the squared distance can be exactly
written as the summation of multiple values.

4.2 Optimization
The matrix form of Eqn. 6 is

FS =
1

2
‖A−

∑
s,t

RsDs,tRt′‖2F (7)

=
1

2
‖A−RDR′‖2F , (8)

where Rt is the indicator matrix whose entries are defined in
Eqn. 1, Ds,t is the lookup matrix, the entries of the distance
matrix A ∈ RN×N are defined as

Ai,j , ‖xi − xj‖22, (9)

Rt′ is the transpose matrix of Rt, ‖·‖F represents the Frobe-
nius norm, and R, D are defined as

R ,
[
R1 · · · RT

]
, (10)

D ,

D1,1 · · · D1,T

...
. . .

...
DT,1 · · · DT,T

 . (11)



This is an unconstrained quadratic program. Setting ∂FS/∂D
as 0, we have

EDE = G, (12)

where

E , R′R =

R1′R1 · · · R1′RT

...
. . .

...

RT ′R1 · · · RT ′RT

 , (13)

G , R′AR =

R1′AR1 · · · R1′ART

...
. . .

...

RT ′AR1 · · · RT ′ART

 . (14)

Both E and G are computed from the database points and
their binary codes. Then, we can solve D in a closed form
by matrix (pseudo-)inversion: D = E†GE†. The Optimized
Symmetric Distance (OSD) algorithm is decipted in Alg. 1.
Below are the details of computing E and G.

Compute E. Let Es,t , Rs′Rt. We compute the entry on
the m-th row and n-th column of Es,t as

Es,t
m,n =

∑
i

rsi,mr
t
i,n. (15)

Recalling that rsi,m in Eqn. 1 indicates whether the i-th point
falls into the m-th bucket on the s-th partition, we have the
observation that Es,t

m,n is equal to the number of points which
fall into both the m-th bucket on the s-th partition and the
n-th bucket on the t-th partition.

Computing all the entries {Es,t
m,n} only need to scan all

the binary codes one time. Each Es,t
m,n is initialized by 0.

For the i-th point, Es,t
m,n increases by 1 if both rsi,m and rti,n

are non-zero. The overall complexity of computing {Es,t
m,n}

is O(T 2N) and the storage complexity is O(M2T 2).

Compute G. According to the definition of the distance
matrix A in Eqn. 9, we compute the element of Gs,t ,
Rs′ARt in Eqn. 14 as

Gs,t
m,n =

∑
i,j

rsi,mAi,jr
t
j,n (16)

=
∑
i,j

rsi,m‖xi − xj‖22rtj,n (17)

= Es,s
m,mE

t,t
n,n(‖cs

m − ct
n‖22 + εsm + εtn), (18)

where

cs
m ,

{
1

E
s,s
m,m

∑
i r

s
i,mxi, Es,s

m,m > 0

0, Es,s
m,m = 0,

(19)

εsm ,

{
1

E
s,s
m,m

∑
i r

s
i,m‖xi − cs

m‖22, Es,s
m,m > 0

0, Es,s
m,m = 0,

(20)

and ct
n and εtn are similarly defined. The transformation

from Eqn. 17 to Eqn. 18 can be justfied by simply replacing
‖xi − xj‖22 with ‖(xi − cs

m) + (cs
m − ct

n) + (ct
n − xj)‖22.

From Eqn. 19, one can observe that cs
m is the center of

all the points which fall into the m-th bucket on the s-th
partition, while εsm from Eqn. 20 is the average distortion
error between the points and the center.

The computation of {Gs,t
m,n} consists of three steps: 1)

scanning all the points to obtain the centers {cs
m} by Eqn. 19,

whose complexity is O(NPT ); 2) scanning all the points to

Algorithm 1 Optimized Symmetric Distance.

Input: Dataset {xi}; Binary codes {bi}; T ; bq

Output: The lookup table {dtn}
1: Compute E by Eqn. 13 and 15
2: Compute {ct

m} by Eqn. 19
3: Compute {εtm} by Eqn. 20
4: Compute G by Eqn. 14 and 18
5: Solve D by Eqn. 12

obtain the distortion errors {εsm} in Eqn. 20 whose complex-
ity is O(NPT ); 3) and then computing {Gs,t

m,n} by Eqn. 18
whose complexity is O(M2PT 2).

5. OPTIMIZED ASYMMETRIC DISTANCE
The goal of optimized asymmetric distance (OAD) is to

learn distance functions {dtn(q)}, which map the real-valued
query q to the lookup tables storing the distances between
the query and the binary codes for all the T partitions. We
choose to learn distance functions instead of generating a
complete look matrix offline as done optimized symmetric
distance, because the query in OAD is any real-valued point
and the number of possible queries is infinite while the query
in OSD is encoded to binary codes and hence the number is
finite.

5.1 Formulation
The objective function for OAD is formulated as follows,

min
{dtn(·)}

FA ,
1

2
Eq

(∑
i

(‖q− xi‖22 −
∑
t,n

rti,nd
t
n(q))2

)
,

(21)

which minimizes the expectation of the misalignment be-
tween the original distance and the approximate distance.

It seems that the optimization is not feasible as there is
an expectation with respect to the query q and there is no
prior information for the distribution of the query. We will
show that the parameters of the distance functions {dtn(q)}
are independent to the query q. On the other hand, the
original distance between the query and each database point
is needed in the objective function of Eqn. 21. We will show
that the functions {dtn(·)} are learnt only using {ct

n} (as
defined in Eqn. 19), {εtn} (as defined in Eqn. 20), and E (as
defined in Eqn. 13). Consequently, the dataset {xi} can be
discarded and is not required in the online computation.

5.2 Optimization
The matrix form of Eqn. 21 is written as

FA =
1

2
Eq(‖a(q)−

∑
t

Rtdt(q)‖22) (22)

=
1

2
Eq(‖a(q)−Rd(q)‖22), (23)

where

d(q) ,
[
d1(q)

′ · · · dT (q)
′]′
, (24)

dt(q) ,
[
dt1(q) · · · dtM (q)

]′
, (25)

a(q) ,
[
‖q− x1‖22 · · · ‖q− xN‖22

]′
, (26)

and Rt and R are defined in Eqn. 1 and Eqn. 10, respec-
tively.



Algorithm 2 Optimized Asymmetric Distance.

Input: Dataset {xi}; Binary codes {bi}; T ; q
Output: The lookup table {dtn}
1: Compute E by Eqn. 13 and 15
2: Compute {ct

n} by Eqn. 19
3: Compute {εtn} by Eqn. 20
4: Compute inv(E)

Let the derivative of FA w.r.t. d(q) as 0. We have

d(q) = inv(E)g(q), (27)

where

g(q) , R′a(q) =
[
a(q)′R1 · · · a(q)′RT

]′
, (28)

and E is defined in Eqn. 13, and inv(E) represents the
(pseudo-) inversion of E.

Let gt(q) , Rt′a(q). According to the definition of the
indicator notation Rt in Eqn. 1, we compute the n-th entry
of gt(q) as

gtn(q) =
∑
i

rti,n‖q− xi‖22 (29)

= Et,t
n,n(‖q− ct

n‖22 + εtn). (30)

where ct
n, εtn and Et,t

n,n are defined in Eqn. 19, Eqn. 20,
and Eqn. 15, respectively. The above equation means that
only a small number of distances rather than the distances
between the query q and all the database points, are re-
quired, and thus the computation cost is reduced. To reduce
the online computations, we precompute inv(E), ct

n and εtn.
Thus, the online process only computes {gtn} by Eqn. 30

with O(PT2Q/T ) time and d by Eqn. 27 with O(T 222Q/T )
time, both of which are independent to N .

The algorithm of Optimized Asymmetric Distance is sum-
marized in Alg. 2.

6. DISCUSSIONS

6.1 Number of Partitions T

6.1.1 Effectiveness vs T
The ranking result is often better if the misalignment of

the approximate distance towards the original distance is
smaller. Thus, we use the mean squared differences between
the true distance and the approximate distance to describe
the effectiveness, i.e., the objective function under optimal
solutions in Eqn. 6 and Eqn. 21 for OSD and OAD, respec-
tively.

The numbers of the optimization variables in Eqn. 6 and
Eqn. 21 are T 2 × 22Q/T and T × 2Q/T , respectively, both of
which are monotonically decreasing with T when T ≤ Q/2.
The following theorem shows how the number of partitions
T influences the effectiveness.

Theorem 1. Given a positive integer c, and the numbers
of partitions T1 and T2 satisfying that T1 = cT2 and the code
length Q is divisible by T1, under the optimal solutions, we
have

F∗S,T1
≥ F∗S,T2

(31)

F∗A,T1
≥ F∗A,T2

(32)

where F∗S,Ti
, i = {1, 2} denotes the optimal objective function

value in Eqn. 6 with Ti partitions, and F∗A,Ti
is for Eqn. 21.

The theorem can be easily proved based on the basic fact
that the optimal solution for the case with T1 partitions is a
feasible solution for the case with T2 partitions. We omit the
detailed proof. Intuitively, this theorem shows that a smaller
T2 can lead to a potentially smaller distance approximate
error than T1.

6.1.2 Complexity vs T
Storage: To compute the lookup tables, OSD requires the
lookup matrix {ds,tm,n} with O(T 222Q/T ) storage. OAD re-

quires the auxiliary matrix inv(E) with O(T 222Q/T ) storage,

{ct
m} with O(P2Q/TT ) storage, and {εtm} with O(T2Q/T )

storage. The storage cost is consistent with the data size,
and is generally decreasing with a larger T .
Training time: For OSD in Alg. 1, it requires O(T 2N) to

compute E, O(PNT ) to compute {cs
m} and {εsm}, O(22Q/TP

T 2) to compute {Gs,t
m,n}, and O(22Q/TT 2) to solve the lin-

ear equation of Eqn. 12 to get D. For OAD in Alg. 2, it
requires O(T 2N) to compute E, O(PNT ) to compute {cs

m}
and {εsm}, and O(23Q/TT 3) to compute the matrix (pseudo-
)inversion of E. Practically, to compute E, {cs

m}, {εsm}, and
{Gs,t

m,n} is quite fast. The main time cost is to solve Eqn. 12
for OSD and the matrix (pseudo-)inversion of E for OAD.
Thus, the training time generally decreases with a larger T .
Online query time: For the online search process, each
distance computation of both OSD and OAD requires O(T )
time by Eqn. 2. To obtain the lookup tables, OSD re-
quires O(2Q/TT (T −1)) preprocessing time by Eqn. 3, while

OAD requires O(PT2Q/T ) and O(T 222Q/T ) for Eqn. 30 and
Eqn. 27, respectively.

6.2 Connections with Related Work
In OSD, we first compute the lookup matrix {ds,tm,n} and

then the lookup table {dtn} for the query code. In OAD,
we compute the functions {dtn(·)} from the training data
and compute the lookup tables for the real-valued query. In
this subsection, we show that several existing approaches are
special cases of our proposed distances.

The Hamming distance and the symmetric weighted Ham-
ming distance used in [28, 15] is a special case of our pro-
posed symmetric distance under the conditions that T = Q
and

ds,tm,n =

{
ws(m⊕ n), s = t

0, s 6= t,
(33)

where m ∈ {0, 1}, n ∈ {0, 1}, and ⊕ denotes the XOR op-
eration. The coefficient ws is 1 for Hamming distance or a
learnt variable in [28, 15].

In [31], the weights of the weighted Hamming distance are
dependent on the un-encoded query as well as the database
points. Let ws be the weight of the sth bit. The dis-
tance presented in [31] is the special case of our proposed
asymmetric distance under the conditions that T = Q and
dsm = ws(bq,s ⊕m), where bq,s represents the s-th bit of the
query code bq, and m ∈ {0, 1}. Similarly, it can be shown
that QsRank [33], expectation-based and lower-bound based
approaches in [4] are also special cases of our proposed asym-
metric distance with different settings for {dtm(q)}.

For product quantization [8], the original P -dimensional
space is partitioned into multiple disjoint subspaces. Let T



be the number of partitions. In each subspace with P/T

dimensions, 2Q/T clusters are generated and each point is
encoded as the concatenation of the index of the nearest
cluster center within each subspace. Denote ĉs

m ∈ RP/T as
the m-th cluster center in the s-th subspace. The symmetric
distance introduced in [8] is a special case of our proposed
symmetric distance under the conditions that there are T
partitions and

ds,tm,n =

{
‖ĉs

m − ĉs
n‖22 s = t

0 s 6= t.
(34)

We have a similar conclusion for the asymmetric distance
introduced in [8] and the proposed optimized asymmetric
distance.

7. EXPERIMENTS

7.1 Experiment Settings

7.1.1 High-dimensional datasets
Three widely-used high-dimensional datasets are used, in-

cluding SIFT1M [8], GIST1M [8], and MNIST [14]. SIFT1M
contains 1 million 128-dimensional SIFT descriptors of local
image structures, with 10, 000 queries. GIST1M contains 1
million 960-dimensional GIST feature vectors which capture
the global image structures, with 1, 000 queries. MNIST has
60, 000 database images, with 10, 000 query images. Each
image contains 28× 28 pixels, and we vectorize each image
as a 784-dimensional feature vector.

7.1.2 Binary code encoding
We adopt several representative binary encoding approaches

to encode the high-dimensional data into binary codes.

• Locality sensitive hashing (LSH) [6]: a typical data-
independent linear hashing method.

• Iterative quantization (ITQ) hashing [3]: one of the
state-of-the-art data-dependent linear hashing meth-
ods.

• Kernel-based supervised hashing (KSH) [16]: a typ-
ical data-dependent kernel hashing method. Follow-
ing [16], we use the Gaussian RBF kernel and randomly
sample 300 points to construct the hash functions.
The supervised information is obtained on 10, 000 ran-
domly sampled points by the Euclidean distance as [16].

• Product quantization (PQ) [8]: a typical non-parametric
method, in which the original space is partitioned into
multiple disjoint subspaces. Each subspace is clustered
into 256 groups.

We generate the binary codes using the above four encod-
ing schemes. For each encoding scheme on each dataset, we
generate the codes with different code lengths ranging from
16 to 128.

7.1.3 Binary code ranking
After obtaining the binary codes, we rank all the data

points based on the distances between their binary codes
and the query. Our optimized distances are compared with
the following distances.

Table 2: The methods used in our experiments.

!(#) means the corresponding encoding algorithm
and the distance are (not) compatible.

Symmetric Asymmetric

OSD HM SD[8] OAD QsRank[33]WhRank[31]AD[8]

LSH ! ! # ! # ! #

ITQ ! ! # ! ! ! #

KSH ! ! # ! # ! #

PQ ! # ! ! # # !

• Hamming distance: The distance is applied on LSH,
ITQ and KSH. PQ is unsuitable because the code is the
index of the nearest cluster center and the Hamming
distance cannot represent the dissimilarity.

• Weighted Hamming distance (WhRank) [31]: WhRank
computes the data-adaptive and query-sensitive weight
for each bit. The distance between the query and each
point is the addition of the weights where the corre-
sponding bit differs.

• Query-sensitive ranking (QsRank) [33]: It assigns float-
precision weights for each bit, and the distance is com-
puted as the summation of at most Q weights (Q is
the code length). Due to the limitation of QsRank, it
is only applied to ITQ, which is based on PCA.

• PQ distances [8]: Both the symmetric distance (SD)
and the asymmetric distance (AD) are introduced in [8]
for the codes generated by PQ. SD is the distance be-
tween the cluster centers, while AD is the distance be-
tween the original query point and the cluster center.

To distinguish different distances, we append a suffix to
the name of the binary encoding scheme. Our proposed ap-
proaches are denoted as ‘-OSD’ and ‘-OAD’ for optimized
symmetric distance and optimized asymmetric distance, re-
spectively. ‘-HM’ is used to denote the Hamming distance.
‘-SD’ and ‘-AD’ are referred particularly to as the symmet-
ric and asymmetric distancess in [8] for the codes generated
by PQ. For instance, LSH-OAD is interpreted as the LSH
encoding scheme with our proposed optimized asymmetric
distance. Table 2 summarizes the names.

7.1.4 Evaluation criteria
For each query point, we use linear scan to perform the

search, i.e., compare it with every database binary code by
different distance measures and evaluate the quality of the
ranking results. The overall performances are evaluated us-
ing two criteria: mean average precision (mAP) and mean
average ratio.

The precision at C is defined as the proportion of the num-
ber of the true neighbors within the top-ranked C points.
The true neighbors of a query are set as the top-2% near-
est neighbors in terms of the Euclidean distance as in the
work [30]. Average precision (AP) is collected for each query.
By averaging over all the queries, we can arrive at the final
mAP.

The mean overall ratio [24] reflects the general quality
of all top-ranked neighbors. Let xq̂c and xqc be the c-th



nearest point of the query q measured by the Euclidean dis-
tance and the approximate distance, respectively. The over-
all ratio regarding the top-ranked C points is RatioC(q) =
1
C

∑C
c=1 ‖q− xqc‖2/‖q− xq̂c‖2. The mean overall ratio is

the mean over all the queries. A lower mean overall ratio
means a better performance.

7.2 Comparison Results
Our proposed approaches (OSD and OAD) have only one

parameter, i.e., the number of partitions T . As discussed in
Sec. 6.1, T controls the trade-off among effectiveness, stor-
age, and speed. In this experiment, we set T in LSH, ITQ
and KSH as 2, 3, 6 and 14 for code length 16, 32, 64 and
128, respectively. The length of each partition could be dif-
ferent and we make them as even as possible. For PQ, we
follow the number of partitions in the code generation. This
parameter will also be studied experimentally in Sec. 7.3.

Fig. 3 shows the experimental results w.r.t. the mAP on
the three datasets. From these results, the following obser-
vations can be observed.

• Our proposed asymmetric distance achieves the high-
est mAP in all the settings. This is because the asym-
metric distance uses more accurate representation of
the query point and generally can achieve better re-
sults than the symmetric distance which uses the query
binary code directly. Our OAD minimizes the approx-
imation errors, which is beneficial for the ANN search.

• Among the symmetric distances, our OSD performs
best, by learning the distance from the original dataset
and minimizing the approximation errors.

• For the binary codes generated by KSH and PQ on
GIST1M, our OSD is even better than the asymmetric
distance WhRank and that of PQ, respectively. This
emphasizes that the optimization of minimizing the
approximation errors is very promising to improve the
ranking accuracy.

• For the PQ code, proposed approaches improve the
second best by around 7 percent on the 960-dimensional
GIST1M with 1 million points, and gain a small im-
provement on the other two datasets. This means that
our approach achieves significant improvement over
the challenging dataset. The reason of different im-
provements comes from the various data distributions.

• The asymmetric distances QsRank and WhRank gen-
erally perform better than the symmetric Hamming
distances, which is also demonstrated in [33] and [31].

The experiment results w.r.t. the mean average ratio are
shown in Fig. 4 for code length 32. In terms of this criterion,
it can be observed that our proposed OAD mostly achieves
the lowest mean average ratio. Meanwhile, our proposed
OSD is the best among all the symmetric distances.

7.3 Effect of T
In this experiment, we study the effect of T . The ex-

periments run on a server with the Intel(R) Xeon(R) CPU
E5-2690 @2.90GHz. The program is in C++ with a single
thread to evaluate the time cost of the online query, while
in the offline training process, multiple threads are enabled.
The results on SIFT1M with the code length 64 generated

by ITQ are reported. Similar results can be found on the
other datasets with other code lengths.

The results are shown in Fig. 5. Except the similar obser-
vations with those in Sec. 7.2, we can also find that the mAP
improves for our OSD and OAD as the number of partitions
T decreases, because the accuracy of the distance approxi-
mation gains in this case. With a small T , the query time of
OSD reduces. The reason is that only small numbers of ad-
ditions are required for each distance computation, and the
preprocessing time in Eqn. 3 is quite small. For OAD, the
query time decreases first and then increases as T increases.
The reason is that a smaller T leads to higher preprocessing
cost, while a larger T also causes higher distance compu-
tational cost. In general, OAD has higher query cost than
OSD since more preprocessing computations are involved
in OAD. With a larger T , the difference between OAD and
OSD becomes minor, because the preprocessing cost is small,
and the distance computational cost is identical.

For the compared distances, the query time of WhRank
and QsRank is longest. This is because for each distance
computation in WhRank and QsRank, at most Q additions
are required. For our OSD and OAD, the number of addi-
tions is T , which is much smaller than Q.

As illustrated in Fig. 5(c), the training time for both OSD
and OAD decreases as T increases. We find the main train-
ing cost is to solve Eqn. 12 for OSD and the matrix (psuedo-
)inversion of E for OAD. Time complexities of both routines
are smaller for a larger T . These results also verify the anal-
ysis in Sec. 6.1.

8. CONCLUSION
In this paper, we study how to effectively measure the dis-

tances for binary code ranking and propose two optimized
distance measures: optimized symmetric distance and opti-
mized asymmetric distance. The key novelty lies in the dis-
tance table between the (encoded) query and the database
codes are explicitly optimized rather than implicitly opti-
mized or heuristically computed as done in the traditional
algorithms. Extensive experimental results demonstrate the
superiority of our proposed solutions over existing distances.
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Figure 3: Results on mAP with with different code lengths. The first, second and third row correspond to
SIFT1M, GIST1M, and MNIST respectively. The higher the mAP is, the better the approach is.

0 2000 4000 6000 8000 10000

1.15

1.2

1.25

1.3

1.35

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

LSH−OAD
LSH−OSD
LSH−WhRank
LSH−HM

0 2000 4000 6000 8000 10000
1.08

1.1

1.12

1.14

1.16

1.18

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

ITQ−OAD
ITQ−OSD
ITQ−WhRank
ITQ−QsRank
ITQ−HM

0 2000 4000 6000 8000 10000
1.1

1.15

1.2

1.25

1.3

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

KSH−OAD
KSH−OSD
KSH−WhRank
KSH−HM

0 2000 4000 6000 8000 10000
1.04

1.06

1.08

1.1

1.12

1.14

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

PQ−OAD
PQ−OSD
PQ−AD
PQ−SD

0 2000 4000 6000 8000 10000

1.15

1.2

1.25

1.3

1.35

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

LSH−OAD
LSH−OSD
LSH−WhRank
LSH−HM

0 2000 4000 6000 8000 10000
1.1

1.15

1.2

1.25

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

ITQ−OAD
ITQ−OSD
ITQ−WhRank
ITQ−QsRank
ITQ−HM

0 2000 4000 6000 8000 10000

1.1

1.15

1.2

1.25

1.3

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

KSH−OAD
KSH−OSD
KSH−WhRank
KSH−HM

0 2000 4000 6000 8000 10000

1.06

1.08

1.1

1.12

1.14

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

PQ−OAD
PQ−OSD
PQ−AD
PQ−SD

0 200 400 600 800 1000 1200
1.1

1.15

1.2

1.25

1.3

1.35

1.4

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

LSH−OAD
LSH−OSD
LSH−WhRank
LSH−HM

0 200 400 600 800 1000 1200
1.05

1.1

1.15

1.2

1.25

1.3

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

ITQ−OAD
ITQ−OSD
ITQ−WhRank
ITQ−QsRank
ITQ−HM

0 200 400 600 800 1000 1200
1.05

1.1

1.15

1.2

1.25

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

KSH−OAD
KSH−OSD
KSH−WhRank
KSH−HM

0 200 400 600 800 1000 1200

1.04

1.06

1.08

1.1

1.12

1.14

Number of the retrieved points

M
ea

n 
av

er
ag

e 
ra

tio

 

 

PQ−OAD
PQ−OSD
PQ−AD
PQ−SD

Figure 4: Results on mean overall ratio with 32 bits. The first, second and third row corresponds to SIFT1M,
GIST1M, and MNIST respectively. The lower the mean average ratio is, the better the approach is.
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Figure 5: Performance with different numbers of partitions on SIFT1M with 64 bits from ITQ.
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